Search results for "Circulating Cell-Free DNA"
showing 4 items of 4 documents
2018
Background Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game. Methods Nine participants were subjected to a standardised sprint training session with cross-over design of five maximal s…
Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.
2012
The phenomenon of circulating cell-free DNA (cfDNA) concentrations is of importance for many biomedical disciplines including the field of exercise physiology. Increases of cfDNA due to exercise are described to be a potential hallmark for the overtraining syndrome and might be related to, or trigger adaptations of, immune function induced by strenuous exercise. At the same time, exercise provides a practicable model for studying the phenomenon of cfDNA that is described to be of pathophysiological relevance for different topics in clinical medicine like autoimmune diseases and cancer. In this review, we are summarizing the current knowledge of exercise-based acute and chronic alterations i…
Circulating cell-free DNA (cfDNA) and extracellular vesicles (EVs) as prognostic and predictive biomarkers in patients with advanced Non-Small Cell L…
2022
The molecular profiling of solid tumors by liquid biopsy: a position paper of the AIOM–SIAPEC-IAP–SIBioC–SIC–SIF Italian Scientific Societies
2021
The term liquid biopsy (LB) refers to the use of various biological fluids as a surrogate for neoplastic tissue to achieve information for diagnostic, prognostic and predictive purposes. In the current clinical practice, LB is used for the identification of driver mutations in circulating tumor DNA derived from both tumor tissue and circulating neoplastic cells. As suggested by a growing body of evidence, however, there are several clinical settings where biological samples other than tissue could be used in the routine practice to identify potentially predictive biomarkers of either response or resistance to targeted treatments. New applications are emerging as useful clinical tools, and o…